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Quimica Tebrica, Sucursal 4, Casilla de Correo 16, (1900) La Plata, Argentina 

Received 13 May 1991 

Abstract. I investigate the equations of motion for a class of apparently nonlinear 
Hamiltonian operators with applications to dissipation and other physical phenomena. 
Under certain conditions one obtains linear dynamical equations which in some cases can 
be solved exactly. A multidimensional harmonic oscillator with a damping potential 
depending on the expectation values of the coordinates and momenta is explicitly treated 
as an illustrative example. 

1. Introduction 

Dissipation phenomena are of great importance in chemistry and physics. The correct 
quantization of dissipative forces is a difficult problem because quantum mechanics 
is based on a Hamiltonian formulation. Many approaches have been suggested to the 
treatment of quantum mechanical damping (for reviews on the subject see [ I ,  21). Here 
I am interested in model Hamiltonians that depend on the state of the system, in 
particular when such a dependence occurs via the expectation values of quantum 
mechanical observables [ 1-51, 

Quantum mechanical dissipation occurs in a variety of physical phenomena, such 
as fission, heavy-ion experiments, and giant resonances [I], among others [2]. Nonlinear 
time-dependent Hamiltonians also appear in the local harmonic approximation [6,7] 
and other approaches [8) to dynamical systems. A nonlinear quantal Hamiltonian for 
dissipation has recently been discussed in the context of information theory [9]. The 
time-evolution equations for expectation values of operators spanning a Lie algebra 
were found to he nonlinear and integrated numerically [9]. Later I showed that this 
problem can be reduced to a set of exactly solvable first-order linear differential 
equations obtained by the introduction of a formal time-evolution operator and the 
use of properties of the Lie algebras [IO]. It is worth mentioning here that another set 
of linear dynamical equations for such a nonlinear Hamiltonian had been obtained 
before (see, for example, [21). 

The purpose of this paper is to investigate the conditions under which one expects 
to obtain linear equations of motion for dynamical systems governed by nonlinear 
Hamiltonians. In particular I concentrate on such problems that can be formulated in 
terms of Lie algebras and justify the use of a formal time-evolution operator [lo]. A 
general dynamical model ofthis kind is considered in  section 2 and a multidimensional 
nonlinear oscillator [SI is discussed in section 3 as an illustrative example. Further 
comments and conclusions are found in section 4. 
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2. Equations of motion for nonlinear Hamiltonians 

In the treatment of dissipative systems one can consider wavepackets that move along 
classical damped trajectories [1,3-51. However, for the sake of generality I assume 
that the system may not be in a pure state so that one has to consider the time-evolution 
of the density operator p(f):  

The expectation value of an operator O ( t ) ,  (O)= tr[p(f)O(t)], propagates in time 
according to 

In this paper 1 confine attention to the case that there is a set of time-independent 
Hermitian operators [ L , ,  L,, . . . , L N )  satisfying 

N 

L H ,  L,l= 1 w,kLk j =  1,2,. . . N. (3) 
k = l  

This situation is commonly found in many models for quantum mechanical friction 
[l-5,9,10] and other phenomena [6,7]. In these particular cases the nonlinear 
Hamiltonian is written as a linear combination of operators that span a finite- 
dimensional Lie algebra. 

For the sake of simplicity I define the column matrix L, and the square matrix S 
with elements 

L, = (L,) S j k  = f ( L j L k + L k L , )  j , k = l , 2  ,..., N (4) 

respectively. The mean-square deviation and correlations of the expectation values L 
are defined as the diagonal and off-diagonal elements, respectively, of the matrix 

(5) 

The time-evolution of the matrices defined above is easily obtained by straight- 

A = s - L L ~  

in which T denotes transpose. 

forward application of (2): 

dL/df = AL (6a )  

dS/dt  = A S + S W T  ( 6 b )  

dA = AA + AAr (6c )  

where A = iW/fi. The initial conditions are L( to)  = Lo, S( t o )  = So, and A( fo) =Ao.  
There are many approaches to quantum mechanical friction [ l ,  21, some of which 

are based on Hamiltonian operators depending on the state of the system [1-51. Here 
I assume that H depends on L thus obtaining a generalization of the model discussed 
by AibreCht i j j  ana Hasse i i ,  4.51. Under such a condition equations (6j are noniinear. 
However, after solving ( 6 a )  one obtains L( f )  and thereby A(f) which will depend on 
L". Therefore, for each set of initial conditions L", L ( f )  can be written U( t )Lo where 
the matrix U( f )  is obtained from 

dU(t)/df = A ( f ) U ( f )  U(  l o )  = I (7) 
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I being the N X N identity matrix. The remaining matrices S and A are also expressed 
in terms of U(t): 

S(1) = U(t)SOU(t)T A(t)=U(t)AOU(t)T. (8) 
If the operators Lj, j = 1 , 2 , .  . . , N, span an N-dimensional Lie algebra, one may 

define a formal time-evolution operator U ( [ ,  to) ,  U(to ,  lo) being the identity operator 
1, in terms of the matrix elements q.k of U as follows: 

N 

U ( [ ,  t0)'LjU(t, to )=  i q,Lk ( 9 )  
k = I  

in which stands for adjoint. This is not a true time-evolution operator because it 
depends on the state of the sytem. Rather, U(t ,  to) is a unitary operator that can be 
obtained from the solution of 

-I " 
(10) 

where Be belongs to the Lie algebra and satisfies [Z, Lj] =[If, Lj] for all j values. Such 
a mathematical artifact was used to transform the nonlinear equations of motion 
satisfied by certain observables of a system composed of a harmonic oscillator with a 
nonlinear damping perturbation [9] into linear differential equations for the elements 
U,, [lo]. The previous argument is aimed to throw light on the meaning of the formal 
time-evolution operator U (  t, to)  and t o  explain when one can use it. 

In what follows I discuss particular conditions under which the dynamical equations 
(6) are linear. First, notice that if L, = i then W,j, A,j, and A,, vanish for all j values 
and one can reduce the dimension of the differential equations from N to N - 1. To 
this end I define ( N  - 1) x ( N  - 1) matrices A', A', and U' by removal of the first row 
and column from A, A, and U, respectively. The mean-square deviations and correla- 
tions for the relevant operators Lj, j = 2 , 3 , .  . . , N, are then given by 

ih-U([, 1 0 ) = X U ( l , t O )  
d t  

A'( 1 )  = U'( t)A'"U'( 1)' (11) 

dU'(t)/dt = A'(t)U(t) U'( l") = I' (12) 

in which U'(t) is the solution of 

I '  being the (N- I )  x (N-  I) unit matrix. A further simplification occurs when A only 
depends on L through the elements Ajl which are of the form 

where C does not depend on L. Under these conditions one can define a new N x N 
matrix A, independent of i, according to 

N N N N 

X = l  k = I  k = 2  k = I  
C AjkLx= I C,xLk+ C A . j k L k =  X AjkLx j = 2 , 3 , .  . .  , N. (14) 

It follows from (6a) and (14) that the column matrix L is also a solution of 

dL(t)/dt =AL(t) L( to)  = LO (15) 
where A,,=O for all j values. In this last equation there is a fictitious variable: 
L, = (L,) = 1, which is kept only to make the differential equations look more compact. 
According to (15) one can write L ( l ) =  U"(t)L", in which 

dU"(l)/dt=A(t)U"(t) U"( 1") = 1. (16) 
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It is worth noticing that because of the conditions above the time-evolution equation 
for A' is linear although the one for S is not. As a particular example of this result 
compare equations (3.10) of [9] with equations (2.15)-(2.17) of [2]. The former 
equations were transformed into linear differential equations by means of the above- 
mentioned formal time-evolution operator [IO]. Of course, this trick is unnecessary as 
one can use the exact solutions for ( x ) ,  ( p ) ,  U,,,,, upx, and uxx to derive those for ( p 2 ) ,  
( x 2 ) ,  and ( p x + x p )  [lo]. 

The solutions to the general dynamical equations discussed before can be obtained 
in closed form in certain cases. For instance, if the matrices A' and A are time 
independent then 

U'(t) = exp[( t - f,)A'] u"(f)=exp[(f-f,)A] (17a) 

L ( t ) = U ( t ) L O  A ( f )  =U'(f)A'oU'(r)T (17b) 

s(t) = u'(t)n'%'(t)'- L'(r)L'(r)T (174  
where L'(t) is obtained by removing ( L J =  1 from L( t ) .  The nonlinear Hamiltonians 
discussed by Albrecht [3] and Hasse [1,4,S] (see also [2]) belong to such a class of 
systems as shown in the next section. 

3. A pseudo-nonlinear frictional Hamiltonian in many dimensions 

It is not the purpose of this paper to discuss the advantages and disadvantages of the 
various quantal frictional models. Rather, I will consider the multidimensional model 
proposed by Hasse [SI to illustrate the application of the quite general results developed 
in the previous section to a concrete case. The Hamiltonian operator is written [5] 
H = I  *p T np + f X T K X +  g T m  +(p)y(x - (x)) 

+fc[(x-(x))TY(P -(p)) + (P -(P))TY(x-(x))l (18) 

in which x, p, and g are column matrices for the coordinate, momenta and constant 
acceleration vector, respectively, K, m, and y are the stiffness, inertia, and friction 
symmetric matrices, respectively, and n = m-' .  Here, the set of operators 
( L , ,  L,, . . . , L N }  is given by  { 1, x,, p,, j = 1.2, .  . . , M } .  It follows from the commutation 
relations 

i[H, XI/ h = -cy (x )  + cyx+ np 

i[H, p]/h = -gTm + (c  - l )y (p ) -  Kx - cyp 

(19a) 

(196) 

ihai 

0 -y' 

OT 'I A'=[ " " 1  C = [  0 

- K  - y '  
-gTm 0 y ' - y  

A = [  g oT O T 1  

- g m  - K  -7 

where y ' =  cy and 0 is an M x 1 column matrix of zeros. If the eigenvalues of A' and 
A are known one can easily express U'( f) and U"( t) as polynomial functions of A' and 
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A. This is not a difficult task because the number of collective degrees of freedom in 
frictional models is small [I]. It is therefore concluded that the equations of motion 
for the frictional model (18) can be easily solved in a more general case than that in 
which m, K and y are diagonal [SI. 

4. Further comments and conclusions 

In this paper I discuss the solutions of the equations of motion for pseudo-nonlinear 
Hamiltonians. The general results of section 2 apply to a wide class of quantum 
mechanical problems in addition to the frictional models considered above. As an 
example I mention the local harmonic approximation to dynamical phenomena which 
is based on the expansion of the potential surface around the trajectory of the 
~ i v e p d c ~ !  so !hi! !he res,!ting Uami!?onizr! dcpefids. ofi !he expeeztian vz!nes of 
the coordinates [6]. Commonly it is not considered to be nonlinear because the 
expectation values of the coordinates and momenta satisfy classical equations of motion 
and appear in the model potential merely as functions of time. However, the 
Hamiltonian actually depends on the initial position of the wavepacket and thereby 
on the dynamical state. One can reduce the number of differential equations to be 
solved by writing them in such an apparent nonlinear way [7j. 

In section 2 I considered that the system may not be in a pure state. However, in 
the case of the mode! treated in section 3 one can assume that the solutions of the 
equations of motion yield the position widths and other parameters of a wavepacket 
[I, 3-51. 

The advantage of introducing abstract operators in section 2 is that the results 
apply to a wider class of problems. One can treat, for instance, degrees of freedom 
which have no classical analogue. 

It has been argued that the frictional model in section 3 can be improved by allowing 
c to depend on time in a prescribed way [3]. Equations ( I ] ) ,  (12), (15) and (16) also 
apply in this more general case, although one cannot expect to  solve equations (12) 
and (16) exactly for an arbitrary c ( t ) .  However, numerical solutions may be obtained 
quite easily. 
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